🌸Как признаки, извлечённые автоэнкодером, соотносятся с другими методами выделения признаков
Признаки, полученные с помощью автоэнкодера, обладают рядом преимуществ и недостатков по сравнению с традиционными методами:
🛠По сравнению с вручную созданными признаками (handcrafted features)
Преимущества: ✔️ Автоэнкодеры автоматически извлекают признаки из данных, без необходимости ручного проектирования. ✔️ Могут адаптивно подстраиваться под специфические закономерности в данных, что особенно ценно в сложных или плохо изученных предметных областях. ✔️ Хорошо работают с высокомерными и шумными данными.
Недостатки: 🙅♂️ Требуют большого объёма данных для эффективного обучения. 🙅♂️ Полученные признаки зачастую трудно интерпретировать, особенно без специальных визуализаций или декодеров.
📉По сравнению с линейными методами, такими как PCA (анализ главных компонент)
Преимущества: ✔️ Автоэнкодеры способны выявлять нелинейные зависимости, в то время как PCA ограничен линейными проекциями. ✔️ Гибкость архитектуры позволяет моделировать сложные структуры данных, выходящие за пределы линейных подпространств. ✔️ Возможность применения модификаций (например, вариационных, спарс-, денойзинг автоэнкодеров).
Недостатки: 🙅♂️ Более трудоёмкие вычислительно, требуют настройки гиперпараметров и структуры сети. 🙅♂️ Чувствительны к переобучению и ошибкам в архитектуре. 🙅♂️ Могут запоминать вход, не извлекая полезных обобщённых признаков, если плохо обучены.
🌸Как признаки, извлечённые автоэнкодером, соотносятся с другими методами выделения признаков
Признаки, полученные с помощью автоэнкодера, обладают рядом преимуществ и недостатков по сравнению с традиционными методами:
🛠По сравнению с вручную созданными признаками (handcrafted features)
Преимущества: ✔️ Автоэнкодеры автоматически извлекают признаки из данных, без необходимости ручного проектирования. ✔️ Могут адаптивно подстраиваться под специфические закономерности в данных, что особенно ценно в сложных или плохо изученных предметных областях. ✔️ Хорошо работают с высокомерными и шумными данными.
Недостатки: 🙅♂️ Требуют большого объёма данных для эффективного обучения. 🙅♂️ Полученные признаки зачастую трудно интерпретировать, особенно без специальных визуализаций или декодеров.
📉По сравнению с линейными методами, такими как PCA (анализ главных компонент)
Преимущества: ✔️ Автоэнкодеры способны выявлять нелинейные зависимости, в то время как PCA ограничен линейными проекциями. ✔️ Гибкость архитектуры позволяет моделировать сложные структуры данных, выходящие за пределы линейных подпространств. ✔️ Возможность применения модификаций (например, вариационных, спарс-, денойзинг автоэнкодеров).
Недостатки: 🙅♂️ Более трудоёмкие вычислительно, требуют настройки гиперпараметров и структуры сети. 🙅♂️ Чувствительны к переобучению и ошибкам в архитектуре. 🙅♂️ Могут запоминать вход, не извлекая полезных обобщённых признаков, если плохо обучены.
Tata Power whose core business is to generate, transmit and distribute electricity has made no money to investors in the last one decade. That is a big blunder considering it is one of the largest power generation companies in the country. One of the reasons is the company's huge debt levels which stood at ₹43,559 crore at the end of March 2021 compared to the company’s market capitalisation of ₹44,447 crore.
However, analysts are positive on the stock now. “We have seen a huge downside movement in the stock due to the central electricity regulatory commission’s (CERC) order that seems to be negative from 2014-15 onwards but we cannot take a linear negative view on the stock and further downside movement on the stock is unlikely. Currently stock is underpriced. Investors can bet on it for a longer horizon," said Vivek Gupta, director research at CapitalVia Global Research.
Библиотека собеса по Data Science | вопросы с собеседований from tw